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Calculation of the Coulomb energy in quasi-two-dimensional systems

Oleksiy V. Bystrenko
Bogolyubov Institute for Theoretical Physics, 14B Metrolohichna Street, Kiev 03143, Ukraine

~Received 7 September 2001; published 7 March 2002!

In this paper we obtain expressions for the Coulomb energy in infinite quasi-two-dimensional systems in the
form of fast converging Ewald sums in the three-dimensional coordinate and two-dimensional inverse space
needed for accurate formulation of periodic boundary conditions in computer simulations. Numerical tests
evidence that the acceptable accuracy in the total energy is achieved by taking into account rather small
number of terms in the sum for the inverse space responsible for the long-range part of interaction.
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In computer simulations of the Coulomb systems, one
the most difficult problems is to combine the periodic boun
ary conditions with the long-range Coulomb interactions
tween particles. A fundamental approach to solve this pr
lem for three-dimensional~3D! case was given by Ewald in
1921@1#. The idea was to convert the infinite series of Co
lomb sums over periodically repeating configurational ce
which converges very slowly, to two rapidly converging s
ries in the direct~coordinate! and the inverse space by spli
ting the interaction in two parts and using the Fourier tra
formation for the long-range part of the interaction. Sin
then, the computation of the Coulomb energy by means
Ewald sums became an important part of simulation te
nique and is widely used, specifically, in Monte Carlo~MC!
studies of 3D Coulomb systems@2–4#.

In recent years, a growing interest has been observe
the so-called quasi-two-dimensional~quasi-2D! Coulomb
systems, i.e., the systems confined in one and infinite in
two other directions. Physical examples of such systems
strongly coupled charged colloidal suspensions geom
cally confined in a thin layer between two plates, dusty pl
mas trapped in one-dimensional potential profiles, electro
cal bilayers in semiconductors, etc. The interest in study
these systems was inspired by experimental and comp
tional observations of various spatial structures, in particu
hexatic phase in 2D melting transition@5–10#.

Apparently, in computer simulations of quasi-2D system
the problem of accurate evaluation of the Coulomb ene
persists. In this case the periodic boundary conditions h
to be imposed only in two dimensions, which makes
conventional 3D Ewald sums inapplicable. However, in sp
of great interest and a large number of works on quasi
Coulomb systems, this point seems to have been poorly m
tioned in the literature. The goal of the present work is
consider this problem, i.e., to obtain relevant expressions
a quasi-2D case and to illustrate their accuracy by numer
examples.

Let us examine a one-dimensionally~along Z axis! con-
fined Coulomb system. Following the treatment conventio
for computer ~say, MC! simulations, we consider a finit
rectangular cell~of a sizeLx5Ly5L, Lz5H) with a finite
numberN of particles such that the total charge in the cell
equal to zero. In quasi-2D case the cell is assumed to p
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odically repeat itself inXY directions to infinity. The prob-
lem is to evaluate the Coulomb energy for a given config
ration $r i% of particles
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ur i2r j1Lmu
~1!

taking account of the interactions with the infinite array
repeating cells. Here the two-dimensional vectorm with the
integer componentsmx50,61, . . . ,6`; my50,61, . . . ,
6` enumerates the cells in the array;Qi and
r i5(xi ,yi ,zi) are the charge and the radius vector of thei th
particle, and the prime sign at the sum means that the t
with i 5 j andmx5my50 should be omitted.

Following the ideas conventional for derivation of 3
Ewald sums, we consider each particle being surrounded
two oppositely charged clouds with Gaussian density dis
butions, so that they compensate one another. The rele
charge density in the basic cell can be written in the fo
r(r )5r1(r )1r2(r ), where

r1~r !5(
i 51

N

Qid~r2r i !2
a3

p3/2 (
i 51

N

Qi exp@2a2~r2r i !
2#,

~2!

r2~r !5
a3

p3/2 (
i 51

N

Qi exp@2a2~r2r i !
2#. ~3!

Here a is the so-called splitting parameter that determin
the relative contributions to the energy in the coordinate a
inverse spaces. Let us consider the potential produced
given configuration of particles. The contribution stemmi
from the densityr1(r ) in the basic cell remains the same
in 3D case

f1~r !5(
i 51

N
Qi erfc~aur2r i u!

ur2r i u
. ~4!

Since the splitting parameter is usually chosen so thataL
.3 –5, the potential decreases with the distance rap
enough and the associated potential energy in the coordi
space with regard to repeating cell images can be calcul
by restricting the relevant sum by the adjacent cells only
©2002 The American Physical Society02-1
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~5!

Here the sums are taken only over those particles in adja
cells, for which the difference in any of three coordinat
does not exceed certain maximal cutoff lengthLmax. In most
of the cases, a nearest image~NI! approximation withLmax
5L/2 is used. Up to this point, our considerations were qu
similar to those exploited by the derivation of convention
3D Ewald sums. The difference emerges, as we conside
contributions stemming from the charge densityr2(r ) re-
sponsible for the long-range part of interactions. In quasi-
case, to allow for the periodicity inXY directions, we have
to use 2D Fourier transformations

r2~r !5(
q

r̃2~q,z!e2 iq•u, ~6!

f2~r !5(
q

f̃2~q,z!e2 iq•u, ~7!

where the Fourier transformr̃2(q,z) can be found directly,
by

r̃2~q,z!5
1

L2E r2~r !d2u5
a

p1/2L2
e2q2/4a2

3(
i

exp@2a2~z2zk!
2#eiq•uk. ~8!

Here we introduced a two-dimensional radius vectoru
5(x,y). The integration is taken over the cell section a
given coordinatez with allowance for periodically repeatin
charge densities. The summations in Eqs.~6! and ~7! are
taken over the discrete set of two-dimensional wave vec
q52pn/L ~with n being a 2D integer wave number!, which
automatically provides the allowance for the periodicity.

The unknown potential amplitudesf̃2(q,z) have to be
found from the equation

d2f̃2~q,z!

dz2
2q2f̃2~q,z!524pr̃2~q,z!, ~9!

which is the consequence of the Poisson equation for
potentialf2(r ) in the coordinate space. Now our goal w
be to solve the boundary problem~9! with the boundary
conditionsf̃2(q,6`)<const. To this end, we use the Gre
function technique. The relevant Green function for the pr
lem ~9! in the case thatqÞ0 reads~see, for instance,@11#!

G(z,z8)52e2quz2z8u/2q and, therefore, the solution is
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f̃2~q,z!524pE dz8G~z,z8!r̃2~q,z8!

5
p

L2 (
k

Qi

q H eqDzk erfcS q

2a
1aDzkD

1e2qDzk erfcS q

2a
2aDzkD J eiq•uk, ~10!

where Dzk5z2zk . The corresponding contribution to th
potentialf2(r ) is given by Eq.~7!, which leads to the fol-
lowing expression for the contribution to the configuration
energy in the inverse space:

Vinv5
p

L2 (
i

N

(
j

N

(
uquÞ0

QiQj

q
eqzi j erfcS q

2a
1azi j D

3cos~q•ui j !. ~11!

Here we introduced the notationzi j 5zi2zj and ui j 5ui
2uj , and took into account the invariance of the total su
with respect to transpositionszi j →2zi j .

In contrast to the 3D case, we have to take into acco
the wave vectorq50. This is due to the fact that the tota
charge of a cell section at a given coordinatez is, in general,
not equal to zero. It means that the total two-dimensio
charge neutrality~at givenz) does not hold and the contri
butions from the zeroth Fourier component have to be ta
into account. This particular case should be treated se
rately, since the Green function for the problem~9! for q
50 is essentially different,G0(z,z8)5uz2z8u/2. Note, that
this Green function is just the solution to the Poisson eq
tion for a charged plane placed atz5z8. The calculations
quite similar to those carried out above yield

V0,inv52
Ap

aL2 (
i , j

QiQj@e2a2zi j
2
1azi jAp erf~azi j !#.

~12!

Finally, we have to take into account one more term~self-
energy! arising due to the spurious interaction between
particle and its Gaussian cloud. The associated energy
tribution, Vsel f5a( iQi

2/Ap does not differ from the one
entering usual 3D Ewald sums and has to be substra
from the expression for the total potential energy. Thus,
final expression for the Coulomb energy reads

VCoul5Vdir1Vinv1V0,inv2Vsel f ~13!

with the quantities entering this relation being determined
Eqs.~5!, ~11!, and~12!.

It is worth mentioning that in a strictly 2D case the e
pressions~11! and ~12! essentially simplify:V0,inv50,

Vinv5
p

L2 (
i

(
j

(
uquÞ0

QiQj

q
erfcS q

2a D cos~q•ui j !, ~14!

and do not exceed in complexity the conventional 3D Ew
sums.
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TABLE I. Direct calculation of the Coulomb energy by Eq.~1! for the given configuration with allowance
for subsequently increasing number of image cells. The quantityNcell determines the number of terms in th
sum ~1! as2Ncell<ms<Ncell , wheres5x,y. For comparison, the Coulomb energy calculated within
NI approximation in Eq.~1! is VCoul52363.124 087.

Ncell 1 10 50 100 500 1000

VCoul 2274.708939 2268.609542 2268.518336 2268.508698 2268.501015 2268.500056
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For practical applications, it is important to have an id
of how fast the series obtained above converge and w
accuracy can be achieved with reasonable computationa
forts. For this purpose, we performed a number of numer
tests of relations~5!, ~11!, and ~13!. The tests were per
formed for a number of configurations generated at rand
for various numbers of particles, charge asymmetry and
ratio H/L. For illustration, we present below the results f
one random configuration with the following parameters:H
5L51, with the number and charge of particles bei
N[1]510, Q[1]515; and N[2]550, Q[2]521 ~the sub-
scripts denote here the species of particles!.
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In Table I we give the results of direct calculations of t
Coulomb energy by Eq.~1! with subsequently increasing d
mension of the array of image cells up to 1000. The res
of tests of the relations~5!, ~11!, and ~13! for the range of
splitting parametera53 –6 are displayed in Table II.

As can be seen from the results, the sums in inverse sp
converge rather fast due to the presence of the funct
erfc(q/2a). In particular, to provide the accuracy 1024 in
calculations of the Coulomb energy, it is sufficient to use
rather small number of wave vectors (nmax55,a55), along
with the NI approximation in the coordinate space. This b
havior was observed for all the configurations that we
Eq.
TABLE II. Contributions~5!, ~11!, and the Coulomb energy of the given configuration calculated by
~13! as a function of the splitting parametera and the maximal wave numbernmax, which determines the
number of terms in the sum~11! as 22pnmax/L<qs<2pnmax/L, wheres5x,y. The quantities marked
‘‘NI’’ relate to the NI approximation in the coordinate space, and those marked* are calculated with the
cutoff lengthLmax5L in Eq. ~5!.

a Vdir
NI Vdir* nmax Vinv VCoul

NI VCoul*

3.0 231.1768146 231.6876391 1 269.949426 2268.998013 2269.508838
2 270.943437 2268.004002 2268.514826
3 270.946481 2268.000958 2268.511782
4 270.946482 2268.000957 2268.511781
5 270.946482 2268.000957 2268.511781

4.0 5.64433550 5.56611942 1 389.904282 2281.478882 2281.557098
2 402.521717 2268.861447 2268.939663
3 402.958839 2268.424324 2268.502540
4 402.962275 2268.420889 2268.499105
5 402.962281 2268.420883 2268.499099
6 402.962281 2268.420883 2268.499099

5.0 29.2064988 29.2005568 1 497.983188 2319.094688 2319.100630
2 543.501801 2273.576074 2273.582016
3 548.411359 2268.666517 2268.672459
4 548.582217 2268.495658 2268.501600
5 548.584705 2268.493171 2268.499113
6 548.584728 2268.493148 2268.499090
7 548.584728 2268.493148 2268.499090

6.0 41.9930802 41.9928351 1 587.314242 2386.233927 2386.234173
2 683.892901 2289.655268 2289.655513
3 703.395722 2270.152447 2270.152692
4 704.975162 2268.573007 2268.573253
5 705.046733 2268.501436 2268.501682
6 705.049248 2268.498922 2268.499167
7 705.049324 2268.498845 2268.499090
8 705.049325 2268.498844 2268.499090
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tested. It should be pointed out that a much higher accur
1027 with smaller number of terms in the inverse spa
(nmax54, a54) can be obtained by taking the cutoff p
rameter in coordinate spaceLmax5L in Eq. ~5!, rather than
NI approximation.

To conclude, we have obtained explicit expressions
the Coulomb energy in infinite quasi-2D systems in the fo
of fast converging Ewald sums in 3D coordinate and
inverse space needed for accurate formulation of perio
03770
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boundary conditions in computer simulations. Numeric
tests evidence that the acceptable accuracy in the total en
is achieved by taking into account rather small number
terms in the sum for the inverse space responsible for
long-range part of the interaction.
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