PHYSICAL REVIEW E, VOLUME 65, 037702
Calculation of the Coulomb energy in quasi-two-dimensional systems
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In this paper we obtain expressions for the Coulomb energy in infinite quasi-two-dimensional systems in the
form of fast converging Ewald sums in the three-dimensional coordinate and two-dimensional inverse space
needed for accurate formulation of periodic boundary conditions in computer simulations. Numerical tests
evidence that the acceptable accuracy in the total energy is achieved by taking into account rather small
number of terms in the sum for the inverse space responsible for the long-range part of interaction.
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In computer simulations of the Coulomb systems, one obdically repeat itself inXY directions to infinity. The prob-
the most difficult problems is to combine the periodic bound-lem is to evaluate the Coulomb energy for a given configu-
ary conditions with the long-range Coulomb interactions be+ation{r;} of particles
tween particles. A fundamental approach to solve this prob- N
lem for three-dimensionaBD) case was given by Ewald in Vv 1 TS S QiQ; (1)
1921[1]. The idea was to convert the infinite series of Cou- Coul™5 =& Iri—rp+Lm|
lomb sums over periodically repeating configurational cells,
which converges very slowly, to two rapidly converging se-taking account of the interactions with the infinite array of
ries in the directcoordinat¢ and the inverse space by split- repeating cells. Here the two-dimensional vegtowith the
ting the interaction in two parts and using the Fourier transinteger componentsn,=0,=1, ... *«; m=0*1,...,
formation for the long-range part of the interaction. Since=® enumerates the cells in the arrayQ; and
then, the computation of the Coulomb energy by means ofi= (Xi.YiZ) are the charge and the radius vector of ittie
Ewald sums became an important part of simulation techparticle, and the prime sign at the sum means that the term

nique and is widely used, specifically, in Monte Cafc) ~ With i=] andm,=m,=0 should be omitted.
studies of 3D Coulomb systerig—4]. Following the ideas conventional for derivation of 3D

In recent years, a growing interest has been observed iﬁwald sums, we consider each particle being surrqundgd by
two oppositely charged clouds with Gaussian density distri-

the so-called quasi-two-dimensionéjuasi-2D Coulomb .

) : ) P butions, so that they compensate one another. The relevant
systems, i.e., the systems confined in one and infinite in the L ' . .

T . charge density in the basic cell can be written in the form
two other directions. Physical examples of such systems are, |~
: - P(1)=pa(r)+p(r), where

strongly coupled charged colloidal suspensions geometri-
cally confined in a thin layer between two plates, dusty plas- N o3 N
mas trapped in one-dimensional potential profiles, electroni- pl(r)zE Qid(r—ri)——, Z Qi exd — @®(r—ry?],
cal bilayers in semiconductors, etc. The interest in studying =1 mri=l

i=1

these systems was inspired by experimental and computa- @)
tional observations of various spatial structures, in particular, s N
. . . Ny a
hexatic phase in 2D meltmg. trans[tlcﬁﬁ 10. _ pa1)=— 2 Q, ex — a(r—r,)?]. 3)
Apparently, in computer simulations of quasi-2D systems, w32 i=1

the problem of accurate evaluation of the Coulomb energy
persists. In this case the periodic boundary conditions havklere « is the so-called splitting parameter that determines
to be imposed only in two dimensions, which makes thethe relative contributions to the energy in the coordinate and
conventional 3D Ewald sums inapplicable. However, in spitenverse spaces. Let us consider the potential produced by a
of great interest and a large number of works on quasi-2m@iven configuration of particles. The contribution stemming
Coulomb systems, this point seems to have been poorly meiffom the densityp,(r) in the basic cell remains the same as
tioned in the literature. The goal of the present work is toin 3D case
consider this problem, i.e., to obtain relevant expressions for N
a quasi-2D case and to illustrate their accuracy by numerical B 2 Q erfa(a|r—r;|)
examples. ¢1(r)_i=1 [r—ril

Let us examine a one-dimensionallglong Z axis) con-
fined Coulomb system. Following the treatment conventionaBince the splitting parameter is usually chosen so that
for computer(say, MO simulations, we consider a finite =3-5, the potential decreases with the distance rapidly
rectangular cellof a sizeL,=L,=L, L,=H) with a finite  enough and the associated potential energy in the coordinate
numberN of particles such that the total charge in the cell isspace with regard to repeating cell images can be calculated
equal to zero. In quasi-2D case the cell is assumed to perby restricting the relevant sum by the adjacent cells only
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1 N N

VgetS s 3 QQerdalrionrim) ?¢>2<q,z>=—4wfdz'g<z,z')52<q,z')

25 T mdfmyl=1 ri—rj+Lm|
(5
?1' { e8% erfc( —+ aAZk)

|2
Here the sums are taken only over those particles in adjacent L
cells, for which the difference in any of three coordinates q
does not exceed certain maximal cutoff lentyth,,. In most +e_qAZkerfC(z - aAZk)
of the cases, a nearest ima@#) approximation withL .«
=L/2is used. Up to this point, our considerations were quitavhere Az,=z—z,. The corresponding contribution to the
similar to those exploited by the derivation of conventionalpotential ¢,(r) is given by Eq.(7), which leads to the fol-
3D Ewald sums. The difference emerges, as we consider thgwing expression for the contribution to the configurational
contributions stemming from the charge densi:té(r) re- energy in the inverse space:
sponsible for the long-range part of interactions. In quasi-2D

edt%,  (10)

case, to allow for the periodicity iXY directions, we have T QiQ;
to use 2D Fourier transformations Vinu:F EI 2 |q%o q ——e%i erf —+aZ”
5 _ X coqq- Ujj). (12
pa(1)=2 py(d,2)e” 4, ®) , |
q Here we introduced the notatiog;=z—2z; and uj;=u;

—U;j, and took into account the invariance of the total sum
with respect to transpositiorns; — — z;; .

bo(1) =2, by(q,z)e 'Y, (7) In contrast to the 3D case, we have to take into account
the wave vectoq=0. This is due to the fact that the total
charge of a cell section at a given coordinats, in general,

) ~ ) not equal to zero. It means that the total two-dimensional
where the Fourier transform,(q,z) can be found directly, charge neutralityat givenz) does not hold and the contri-
by butions from the zeroth Fourier component have to be taken

into account. This particular case should be treated sepa-
1 o . rately, since t_he Grgen function for the probld®) for g
D2(0,2) = fpz( )yd2u= = ~e I =0 is essentially differentgy(z,z')=|z—2'|/2. Note, that
L this Green function is just the solution to the Poisson equa-
tion for a charged plane placed atz'. The calculations
X >, exf] — a?(z—z,)2]e'% Uk, (8)  quite similar to those carried out above yield
I

Jm

2

_ o | Voine=——— > QiQj[e”“%i+az; Jmerflaz;)].
Here we introduced a two-dimensional radius vector al® i
=(X,y). The integration is taken over the cell section at a (12)
given coordinatez with allowance for periodically repeating
charge densities. The summations in E. and (7) are
taken over the discrete set of two-dimensional wave vectors
g=2mn/L (with n being a 2D integer wave numbewhich
automatically provides the allowance for the periodicity.

The unknown potential amplituded,(q,z) have to be
found from the equation

Finally, we have to take into account one more tesalf-
energy arising due to the spurious interaction between a
partlcle and its Gaussian cloud. The associated energy con-
tribution, Ve = a=;Q?% /7 does not differ from the one
entering usual 3D Ewald sums and has to be substracted
from the expression for the total potential energy. Thus, the
final expression for the Coulomb energy reads

Veour=Vair + Vine + Voine — V 13
d2¢>2(q ) Coul™ Vdir in 0,in self (

5 B ~

dzz 4°¢2(0,2) =~ 4mpy(4,2), ©) with the quantities entering this relation being determined by

Egs.(5), (11), and(12).
It is worth mentioning that in a strictly 2D case the ex-

which is the consequence of the Poisson equation for thgressiong11) and(12) essentially simplifyVo;n, =0,
potential ¢,(r) in the coordinate space. Now our goal will
be to solve the boundary proble®) with the boundary aT Q QJ q
conditionsg,(q, = ) <const. To this end, we use the Green Vinv:E zl ; ‘%o q erfc( )cos(q uj), (14
function technique. The relevant Green function for the prob-
lem (9) in the case thatj+ 0 reads(see, for instance,11])  and do not exceed in complexity the conventional 3D Ewald
G(z,2')=—e"97"7l12q and, therefore, the solution is sums.
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TABLE I. Direct calculation of the Coulomb energy by E4) for the given configuration with allowance
for subsequently increasing number of image cells. The quaNtity determines the number of terms in the
sum(1) as —N¢e=m,<N., Wherea=Xx,y. For comparison, the Coulomb energy calculated within the
NI approximation in Eq(1) is Vo, = —363.124 087.

Neel 1 10 50 100 500 1000

Veou  —274.708939 —268.609542 —268.518336 —268.508698 —268.501015 —268.500056

For practical applications, it is important to have an idea In Table | we give the results of direct calculations of the
of how fast the series obtained above converge and whaloulomb energy by Eq1) with subsequently increasing di-
accuracy can be achieved with reasonable computational efrension of the array of image cells up to 1000. The results
forts. For this purpose, we performed a number of numericabdf tests of the relationg5), (11), and (13) for the range of
tests of relationg5), (11), and (13). The tests were per- splitting parameterr=3—-6 are displayed in Table II.
formed for a number of configurations generated at random As can be seen from the results, the sums in inverse space
for various numbers of particles, charge asymmetry and theonverge rather fast due to the presence of the functions
ratio H/L. For illustration, we present below the results for erfc(q/2«). In particular, to provide the accuracy 1Din
one random configuration with the following parametdis: calculations of the Coulomb energy, it is sufficient to use a
=L=1, with the number and charge of particles beingrather small number of wave vectons,(,,=5,a=5), along
Ni1j=10, Qpy=+5; and N;;=50, Q;;;=—1 (the sub- with the NI approximation in the coordinate space. This be-
scripts denote here the species of particles havior was observed for all the configurations that were

TABLE II. Contributions(5), (11), and the Coulomb energy of the given configuration calculated by Eq.
(13) as a function of the splitting parameterand the maximal wave numbey,,,, which determines the
number of terms in the surfll) as — 27Ny /L<q,<27n./L, wherec=X,y. The quantities marked
“NI” relate to the NI approximation in the coordinate space, and those matkede calculated with the
cutoff lengthL ,,,=L in Eq. (5).

o Vyilr Viir Nmax Viny Vgloul Veoul

3.0 —31.1768146 —31.6876391 1 269.949426 —268.998013 —269.508838
2 270.943437 —268.004002 —268.514826
3 270.946481 —268.000958 —268.511782
4 270.946482 —268.000957 —268.511781
5 270.946482 —268.000957 —268.511781

4.0 5.64433550 5.56611942 1 389.904282 —281.478882 —281.557098
2 402.521717 —268.861447 —268.939663
3 402.958839 —268.424324 —268.502540
4 402.962275 —268.420889 —268.499105
5 402.962281 —268.420883 —268.499099
6 402.962281 —268.420883 —268.499099

5.0 29.2064988 29.2005568 1 497.983188 —319.094688 —319.100630
2 543.501801 —273.576074 —273.582016
3 548.411359 —268.666517 —268.672459
4 548.582217 —268.495658 —268.501600
5 548.584705 —268.493171 —268.499113
6 548.584728 —268.493148 —268.499090
7 548.584728 —268.493148 —268.499090

6.0 41.9930802 41.9928351 1 587.314242 —386.233927 —386.234173
2 683.892901 —289.655268 —289.655513
3 703.395722 —270.152447 —270.152692
4 704.975162 —268.573007 —268.573253
5 705.046733 —268.501436 —268.501682
6 705.049248 —268.498922 —268.499167
7 705.049324 —268.498845 —268.499090
8 705.049325 —268.498844 —268.499090
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tested. It should be pointed out that a much higher accuraclpoundary conditions in computer simulations. Numerical
107 with smaller number of terms in the inverse spacetests evidence that the acceptable accuracy in the total energy
(nmax=4, a=4) can be obtained by taking the cutoff pa- is achieved by taking into account rather small number of
rameter in coordinate spatg,,,=L in Eq. (5), rather than terms in the sum for the inverse space responsible for the
NI approximation. long-range part of the interaction.

To conclude, we have obtained explicit expressions for
the Coulomb energy in infinite quasi-2D systems in the form
of fast converging Ewald sums in 3D coordinate and 2D This work was supported by the State Fund of Fundamen-
inverse space needed for accurate formulation of periodital Research of Ukraine, Grant No. 02.07/00134.
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